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Abstract
1.	 Reliable statistical inference is central to ecological research, much of which seeks 

to estimate population attributes and their interactions. The issue of sampling de-
sign and its relationship to inference has become increasingly important due to rapid 
proliferation of modelling methodology (line transect modelling, capture‐recapture, 
estimation of occurrence, model selection procedures, hierarchical modelling) and 
new sampling approaches (adaptive sampling, other specialized designs). It is impor-
tant for ecologists using these advanced methods to be aware of how the linkages 
between sample selection and data analysis can potentially affect inference.

2.	 We examine design‐based and model‐based inference frameworks for ecologi-
cal data collected randomly, purposively or opportunistically. We elucidate differ-
ences in the probability structures for data arising from these frameworks, clarify 
the assumptions that underlie them, and demonstrate their differences.

3.	 Design based inference builds on a probability structure inherited from randomized 
data collection, whereas model‐based inference relies on an assumed stochastic 
model of the data. By itself, a design‐based approach is of limited value for infer-
ences about causal hypotheses. In contrast, model‐based inference is dependent 
on a conditionality principle that can seldom be shown to be met for an ecological 
system. We describe the conditions under which one can safely ignore sampling 
design in model‐based analysis, along with inferential implications if these condi-
tions are not met. The special case of opportunistic sampling is discussed.

4.	 We present a combined framework that takes advantage of both approaches to 
inference, and provides a robust methodology that can deal with the modelling of 
sampling problems such as non‐detection and misclassification, as well as the ex-
ploration of causal hypotheses. The combined framework can be useful for iden-
tifying optimal sampling strategies.

5.	 Each approach to inference has its strengths and weaknesses, and practitioners 
should be aware of these in order to tailor designs and analyses to specific ques-
tions. We use the approaches and their underlying rationales to provide guidelines 
for choosing designs and estimators for reliable inference.
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1  | INTRODUC TION

Reliable statistical inference is central to ecological research, much 
of which seeks to estimate population attributes such as size or vital 
rates, their interrelationships, and the influence of environment and 
management. In recent years new modelling approaches have pro-
liferated (Buckland, Goudie, & Borchers, 2018; Williams, Nichols, & 
Conroy, 2002), along with new sampling approaches such as adap-
tive sampling (Thompson, 2012). Due to these advances, as well as 
the development of new technology for collecting and displaying 
complex data and large databases, the issue of sampling design and 
its relationship to statistical inference has become increasingly im-
portant. Ecologists using these advanced methods should be aware 
of how statistical inference is affected by sampling and its linkage 
to analysis, since ignoring sampling design can lead to biased es-
timation, and hence to ineffective decision making. An example is 
size‐stratified fish sampling that can lead to erroneous estimation 
of parameters such as natural mortality rate (Goodyear, 2019), and 
in turn can bias the estimates of stock size and yield that factor into 
harvest rates (Clark, 1999).

Field studies in ecology involve collecting data about a popula-
tion, followed by analysis based on hypothesized models. Both data 
collection and analysis can involve random elements, associated 
with sample selection and statistical estimation of model parame-
ters. Although it seems intuitively clear that model‐based inference 
may depend on the sampling protocol that determines what data 
are available, the links between sampling design and model analysis 
are rarely addressed (though see, e.g. studies by Edwards, Cutler, 
Zimmermann, Geiser, & Moisen, 2006 on sampling design effects 
on classification tree models for predicting species distributions; by 
Conn, Thorson, & Johnson, 2017 on testing and correcting for bi-
asing effects of preferential sampling in population surveys; and by 
Irvine, Rodhouse, Wright, & Olsen, 2018 on erroneous model‐based 
conclusions resulting from non‐ignorable sampling designs).

Our objective in this paper was to explore the interplay between 
sampling design and statistical inference. We describe design‐based 
and model‐based frameworks for inference, and contrast them for 
data collected randomly, purposively or opportunistically. We pro-
vide an integrated framework combining both design‐based and 
model‐based factors, which can be useful for identifying effective 
sampling strategies. We examine the conditions under which the 
sampling design can be safely ignored in statistical inference, and 
discuss the special case of opportunistic sampling and its inferential 
limitations.

2  | TR ADITIONAL INFERENCE PATHWAYS

Statistical analysis in ecology typically follows one of two well‐
known inferential tracks, depending on randomization in data 
collection and modelling as a basis for inference. Inference from 
data collected by means of random sampling is said to be de‐
sign‐based, in contrast to model‐based inference, which relies on 

a hypothesized model that is assumed to describe the observed 
data. Though these two approaches both address the structure 
and function of ecological systems, they treat randomness in dis-
tinctive ways, often focusing on different ecological attributes and 
using different conceptual frameworks (Gregoire, 1998; Sterba, 
2009).

The distinction between the two approaches to inference builds 
on the differing views of R.A. Fisher and Jerzy Neyman (Lenhard, 
2006), who played prominent roles in the development of modern 
statistics. The modelling approach based on Fisher’s work recognizes 
that empirical random sampling is often not feasible, particularly in 
observational studies, so its inferential framework relies on model-
ling—including distributional assumptions about observations—to 
mimic random sampling even when it is absent (Fisher, 1955, 1958). 
Observations inherit their randomness from model‐based assump-
tions about observation probabilities, rather than from any empirical 
randomness associated with sampling. This leads to a focus on popu-
lations described by hypothesized models, and to sampling protocols 
that may be non‐random.

In contrast, the design‐based approach has grown out of 
Neyman’s work, recognizing that hypothetical populations and 
models to fit them are fallible and subjective, and to be avoided 
when possible in making inferences from sampling data (Neyman, 
1957; Neyman & Pearson, 1933). The framework for design‐based 
inference focuses instead on finite populations that are randomly 
sampled. Samples inherit their randomness from a sampling de-
sign rather than from  model‐based distributional assumptions 
(Neyman, 1934).

Statistical practice in ecology includes both design‐ and model‐
based inference, as well as combined approaches that incorporate 
both random sampling and stochastic values in a single statistical 
assessment. Thus:

Design‐based inference accounts only for sampling random-
ization, as in an evaluation of fixed values for units collected 
randomly. For example an analyst might focus on the random 
selection of units from a population, assuming that realized unit 
values were previously generated by a (possibly unrecognized) 
stochastic process and now are fixed. Thus, the analysis need not 
account for randomness in the unit values. However, sampling is 
considered to be random. Examples include well‐known sampling 
designs such as cluster sampling, stratified random sampling, and 
systematic sampling.

Model‐based inference accounts only for stochasticity in unit val-
ues, as in an evaluation of a previously identified sample of units. For 
example the analyst might focus on the stochastic values of units 
that have already been selected. The analysis need not account for 
sampling randomization, because the sample is considered fixed. 
However, the unit values are considered random.

Combined inference incorporates both random sources, as in col-
lection of random samples from a population and observation of 
stochastic unit values. Sampling and unit values are each considered 
to be random, and the approach accounts for both sources of ran-
domness in estimation and reliability assessment.
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2.1 | Design‐based framework

A design‐based framework for inference involves three key elements:

•	 a population of finitely many potential population units;
•	 a sampling design that describes a random or probability‐based 

selection of units (i.e. the assignment of a probability of selection 
to potential samples); and

•	 a sampling scheme describing the mechanism for implementing 
the design.

The population is defined operationally, by the assignment of non‐zero 
selection probabilities to subsets of units. By implication, units with no 
probability of selection are not considered part of the population, and 
no inference to them is possible. The targets of inference typically are 
straightforward population attributes such as population totals, means 
and ratios.

The statistical properties in a design‐based framework derive 
from randomly sampling population units and recording unit val-
ues, denoted here by yk. The values themselves are held to be fixed, 
whereas the sampling process is random. The sampling frame for 
design‐based inference ideally consists of a list of units from which 
a sample can be selected. The units often are physical entities, for 
example individual organisms or clusters of organisms, plots of land 
or landscape patches of multiple plots, etc. The sampling design 
consists of assigning a probability of selection to potential samples 
(with, e.g. simple random sampling, stratified random sampling, clus-
ter sampling). Finally, a sampling scheme describes the actual selec-
tion of units and observation of values on them.

A standard for probability sampling is the simple random sam-
pling design, in which all same‐size subsets of sampling units are 
equally likely to be selected. Sampling designs with varying selection 
probabilities are often referred to as ‘complex designs’ (Skinner & 
Wakefield, 2017). A common motivation for deviating from simple 
random sampling is efficiency, as measured by estimator variance. 
In many cases, estimator precision can be improved with stratifi-
cation, clustering, and sampling based on unequal probabilities of 
unit selection, depending on the population structure. For example 
randomization within recognized strata of known stratum sizes can 
take advantage of systematic differences among strata to produce 
unbiased population estimators with smaller variance than simple 
random sampling. Other complex designs frequently arise in spatial 
sampling: transect sampling and other applications involve cluster 
and systematic sampling (Thompson, 2012), in which random selec-
tion of primary units is followed by the complete enumeration of all 
secondary units in each primary unit. If known, variable cluster sizes 
can be used in selection with unequal probabilities, or in forming 
ratio estimators. Multi‐stage sampling is also possible, with random 
sampling of secondary units and complete enumeration of tertiary 
units. Ecological applications use a very large number of sampling 
strategies involving various combinations of stratification, multi‐
stage clustering, unequal probability sampling with auxiliary vari-
ables, and many other design factors.

The possibility that any unit in a population can be selected 
establishes the inferential linkage between units that are selected 
and those that are not. The design thereby allows statistical infer-
ence to be made to the whole population, including unselected 
units. A probability‐based sampling design imparts stochasticity 
to samples, with variation among samples that declines to zero as 
sample size approaches a population census. Simple random sam-
pling, and many other well‐known designs such as stratified sam-
pling, cluster sampling, systematic sampling, ratio and regression 
sampling, are probability‐based and designed to control or reduce 
sampling variability.

A key strength of a design‐based approach is the avoidance of 
challenges to inferential results, which can otherwise occur if results 
depend on models inadequately representing the structure of pop-
ulation values. Its main limitations are an inability to address analyt-
ical or causal hypotheses (given the absence of a process model by 
which to express them); a need for models to handle such factors 
as partial detection and non‐response even though the framework 
seeks to avoid the use of models; and an inability to account for non‐
sampling errors such as measurement error.

2.2 | Model‐based framework

A second generic approach to statistical inference uses a model‐
based framework, with different elements from those in a design‐
based framework. They typically include:

•	 a statistical model describing how observations on population 
units are thought to have been generated from a super‐population 
with potentially infinitely many observations for each unit;

•	 an assumed stochastic structure that allows the unit values them-
selves to be seen as random variables; and

•	 a ‘conditioning principle’ by which any particular set of observa-
tions becomes statistically comparable to any other set of ob-
servations after hypothesized conditions (e.g. strata, clustering, 
disproportionate sampling effort) are accounted for.

The latter point is especially problematic in ecological investigations, 
because important structural features of ecological systems are often 
unknown. Many ecological studies focus on identifying relevant con-
ditioning variables.

In a model‐based approach, statistical inference is dependent 
on the assumed stochastic structure of the model, rather than the 
sample selection process (which may or may not be random). Unit 
values are treated as random variables from the super‐population, 
and denoted here by Yk to distinguish them from the fixed yk val-
ues in the design‐based framework. Targets of inference typically 
are the model parameters and causal or analytic relationships among 
parameters and the conditioning variables. Examples include mark–
recapture and band‐recovery models; occupancy models; models for 
distance sampling, survival and nest success; and many others that 
fit ecological data to an assumed model for purposes of estimating 
parameters and identifying model structures (Williams et al., 2002).
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Model‐based inference relies on modelling and model assump-
tions to impute stochasticity in an analysis. Because the model 
structure is held to apply to all potential observations, presumably 
any sample of observations will suffice; that is, sampling can be non‐
random. With non‐random sampling there is no sampling distribu-
tion, and therefore no opportunity to use sampling probabilities for 
generalizing from sampled to unsampled units. Instead, inference 
must depend on distributions identified in the assumed model. The 
assumed applicability of the model to all potential sampling units al-
lows inference to be extended beyond the sample to the population. 
Because the unit values are tied to a stochastic process describing 
the population, stochastic variation in the values remains, irrespec-
tive of the sample size. This contrasts with design‐based inference, 
in which variation asymptotically vanishes as sample size approaches 
a census (Gregoire, 1998).

Key strengths of a model‐based approach include the ability to 
make inferences when sample selection is non‐random; the ability to 
investigate causal and analytic hypotheses; the ability to investigate 
responses to many factors with complex interactions; and some-
times the potential for improvements in estimation beyond what is 
possible with random sampling. Its main limitations include the po-
tential inability to meet Fisher’s conditionality principle because se-
lection factors and strata or cluster indicators fail to be identified or 
observed; the potential to omit relevant factors unknowingly in sam-
ple selection; and the unbounded complexity of alternative model 
specifications, which can leave the analytic results suspect for any 
particular model.

3  | UNBIA SED ESTIMATION IN DESIGN‐
BA SED AND MODEL‐BA SED INFERENCE

In this section we consider how randomness in data collection can 
influence estimator performance. We address the two sources of 
stochastic variation mentioned above, involving random selection 
of samples and unit values that are generated by a stochastic pro-
cess. Because design‐based and model‐based approaches focus on 
different statistical features, they treat the issue of estimator per-
formance, and particularly estimator bias, somewhat differently.

Again, we consider a finite population of N discrete units, with 
realized values y

−
= (y1, … , yN) of a random vector Y= (Y1, … ,YN) from 

a super‐population. An example might be 100 forest stands in a re-
gion, with individual stand values consisting of the proportions of 
stand area covered by the forest canopy. For each stand, a realized 
value of canopy cover can be observed, and repeated observations 
can yield variation in a stand’s cover values.

To contrast the two inference scenarios, we address the issue of 
how well an estimator represents the population. Thus, consider a 
population attribute Y0=h(Y) derived from Y (e.g. mean proportion 
of stand area covered by canopy for the population of stands), and 
an estimator Ŷ0=g(Ys) of Y0 based on a sample s of the Y values. For 
any particular realization y

−
, we denote the value of the population 

attribute by y0=h(Y=y
−
) and the estimator value by ŷ0=g(Ys=ys).

Because Y0=h(Y) is a function of the vector Y, it inherits stochas-
ticity from the Y values. The estimator Ŷ0=g(Ys) does as well, but it is 
also influenced by sampling. By conditioning Ŷ0 on one or the other 
of these factors, two conditional estimators can be identified, one 
associated with design‐based inference and the other associated 
with model‐based inference.

3.1 | Design‐based inference

In design‐based inference, the source of random variation in-
volves the selection of a sample s={s1, … , sn} of realized values 
{ys1 , … , ysn}, according to a sampling design that assigns probabili-
ties P(s) to samples. In our forest example, sampling might involve 
the random selection of 10 of the 100 stands, with a selection 
probability for any given stand that is proportional to its area. A 
large number of different samples of 10 stands can be selected 
from the population of 100 stands, each with its own selection 
probability P(s). A scenario that accounts only for random sampling 
takes the canopy cover values as realized, that is treats them as 
fixed quantities {y1, … , yN}.

By conditioning Ŷ0 on the population values Y, the estimator (
Ŷ0|Ys=ys

)
= ŷ0 ceases to be subject to the stochastic effect of Y, 

leaving only the effect of random sampling. Thus, sample values in 
the estimator are treated as fixed and non‐random, so that statistical 
inference is based solely on probability sampling of the units. The 
values ŷ0=g(ys) are averaged over the sample probabilities P(s), 
where the expectation with respect to these probabilities is denoted 
by Ep (⋅). If Ep

�
ŷ0
�
=
∑

s P(s)g(ys) coincides with y0, the estimator is said 
to be design‐unbiased for y0 (Gerow & McCulloch, 2000) (see 
Appendix S1).

A design‐unbiased estimator ŷ0=g(ys) will on average yield the 
population value y0  under the design probabilities P(s), irrespective 
of any particular array of unit values y

−
. In that sense the distribu-

tion model f(Y), and any process producing that distribution, are ir-
relevant. An obvious implication for design‐unbiased estimation is 
that the sampling design must be probability‐based, because only 
then is there a probability distribution P(s) with which to determine 
Ep

(
ŷ0
)
.

3.2 | Model‐based inference

Alternatively, in model‐based inference the source of variation 
involves unit‐specific random values {Y1, … ,YN} that are assumed 
to have been generated by a stochastic process. Thus, Y has a 
joint distribution f(Y ), and any subset Ys=

{
Ys1 , … ,Ysn

}
 of values 

in Y has a marginal distribution fs(Ys). In the forest example, the 
observed proportion of stand area covered by the canopy may 
vary with daily conditions (cloud cover, ambient light, and other 
factors), so the stand proportions are modelled as random vari-
ables with their own means and variances. A scenario that ac-
counts only for stochastic unit values takes the sample of stands 
as given.
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In general, conditioning Ŷ0 on a sample s means the estimator (
Ŷ0|s

)
=g(Ys) ceases to be subject to the influence of random sam-

pling, leaving only the effect of stochasticity in the vector Y. In this 
case the sample s is treated as fixed, so that statistical inference is 
based solely on the stochasticity of unit values. Letting Em (⋅) de-
note expectation with respect to model stochasticity, if 
Em(Ŷ0|s)= ∫ fs(ys)g (ys) dys coincides with Em(Y0) for every sample s, 
the estimator is said to be model‐unbiased for Y0 (Gerow & 
McCulloch 2000) (see Appendix S1).

A model‐unbiased estimator will on average yield a value of 
Em(Y0) under the model distribution f(Y), irrespective of the particular 
sample s of units. In that sense the sample distribution P(s) is irrele-
vant. A practical implication for model‐unbiased estimation is that 
patterns in the expected values must uniformly reflect the popula-
tion structure across samples.

With model‐based inference one must be confident that the 
sample appropriately represents the population from which it 
was obtained, for otherwise any model‐based inferences about 
that population can be biased and misleading. This contrasts 
with design‐based inference, which requires accurate portrayal 
of the probabilities of the sampling design used in sample selec-
tion, for otherwise design‐based inferences can be biased and 
misleading.

Both design‐unbiased and model‐unbiased estimators can be 
shown to be (unconditionally) unbiased for Y0 (Thompson, 2012). 
Thus, there is no basis for preference for either approach in terms 
of bias alone. Instead, preference must be based on one of the other 
factors mentioned earlier (estimation objectives, estimator preci-
sion, capacity for hypothesis testing, treatment of non‐sampling er-
rors, vulnerability to challenge of inferential results).

4  | E X AMPLES COMPARING DESIGN‐
BA SED AND MODEL‐BA SED FR AME WORKS

The following examples show that a population estimator can have 
different statistical behaviours in model‐based and design‐based 
approaches.

4.1 | Simple random sampling without replacement

To contrast design‐based and model‐based inference, we use a sim-
ple example involving estimation of the mean of a population con-
sisting of N sampling units, using a simple random sample of size n 
drawn without replacement. In our forest example, sampling might 
consist of the selection of 10 stands without replacement from a 
population of 100 stands.

A design‐based estimator of the finite population total 
Ty=N�y=

∑N

i=1
yi of realized unit values is given by

with statistical properties that depend exclusively on the sampling de-
sign, absent any consideration of the process generating the unit values 
themselves. The expected value and variance of T̂y are Ep(T̂y)=Ty and

respectively (Cochran, 1977), where the subscript p refers to proba-
bility sampling.

The situation is somewhat different for model‐based inference. 
Assume a model Yk=�+�k of independent unit values Yk for the 
population units, with constant model variance across the units: 
�k∼N(0, �2). For a group of n units an optimal model‐based estimator 
of μ is given by

(Graybill, 1976), with statistical properties that depend exclusively on 
the underlying model absent consideration of the mechanism for sam-
ple selection. The expected value and variance of T̂Y are Em(T̂Y)=N𝜇 and

respectively, where the subscript m refers to model stochasticity.
Both estimators of the population total in Equations 1 and 3 

seem plausible under the sampling and model assumptions. Indeed, 
both produce essentially the same estimates for the population total, 
namely the sample mean weighted by population size. However, the 
estimator variances in Equations 2 and 4 differ, a consequence of dif-
ferent stochastic sources in design‐based and model‐based inference. 
Other meaningful differences are that Ty, �y=Ty∕N and �2

y
 are popu-

lation parameters for design‐based inference, whereas TY is a random 
variable and μ and σ are model parameters for model‐based inference.

That said, with large N one would expect the mean �y and vari-
ance �2

y
 of the realized population to be close in value to the mean μ 

and variance σ2 of the stochastic process generating the population 
values. Whether such concordance is observed in the data analysis 
depends mainly on whether the model that is assumed accurately 
describes the underlying stochastic process. When there is a mis-
match between the actual process and the model used to represent 
it, there is no reason to expect consistency between estimators from 
the two approaches.

4.2 | Sampling with unequal inclusion probabilities

Here we replace the simple random sampling design in the previ-
ous example by a design in which unit inclusion probabilities �k are 
unequal. The Horwitz–Thompson estimate (Horvitz & Thompson, 
1952) of Ty for a sample s is

(1)
T̂y=N𝜇̂y

=
N

n

∑
k∈s

yk,

(2)

varp(T̂y)=N2
S2
y

n

�
1−

n

N

�

=N2

⎡
⎢⎢⎣

∑N

k=1

�
yk−𝜇y

�2
N−1

⎤
⎥⎥⎦

�
1

n
−
1

N

�

(3)
T̂Y=N𝜇̂

=
N

n

∑
k∈s

Yk

(4)varm(T̂Y)=
N2

n
𝜎2

T̂y=
∑

k∈s

yk

𝜋k
,
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which can be shown to be design unbiased (see Appendix S1).
Again, the situation differs for model‐based inference. Assume the 

same model as in Example 1, Yk=�+�k for independent unit values Yk 
with constant model variance across the units: �k∼N(0, �2). In this sit-
uation the model bias of the Horwitz–Thompson (H–T) estimator T̂y is

which is non‐zero unless 
∑

k∈s �
−1
k

=N. Thus, the estimator T̂Y is generally 
model‐biased for unequal probability sampling designs. The bias is likely 
to be slight for large values of N, since 

∑
k∈s �

−1
k

 is design‐unbiased for N. 
Nevertheless, the H–T estimator, which is necessarily unbiased in design‐
based inference, is for the most part biased in model‐based inference.

4.3 | Generalizations

The examples just described address estimators of the population total 
Ty=

∑N

i=1
yi and the expected value E

(
TY

)
=N� based on a sample of 

population units. It is of course possible to consider other estimators 
of other population attributes. Whether to use design‐based or model‐
based inference comes down to the focus of the estimation (on the 
mean of the realized unit values, or the mean of the process thought to 
generate them) and the acceptability of the model assumptions. If the 
assumptions are held to be acceptable, a model‐based approach can 
produce reliable and efficient estimation; otherwise, without model as-
sumptions, a design‐based approach can yield reliable inference.

5  | INFORMATIVE AND NON‐
INFORMATIVE SAMPLING

In this section we consider sampling conditions that allow for popu-
lation‐level inference, and the inferential consequences of violating 
those conditions. At issue is whether one can extend statistical infer-
ence from the sample to the entire population of interest. Many eco-
logical investigations simply overlook the linkage between sampling 
and analysis, by treating the sample as if it ‘represents’ the popula-
tion irrespective of how it is collected, and proceeding directly to 
data analysis and inference. If a sample is not representative, popu-
lation‐level inferences, including model‐based inferences, can be 
badly misleading, often unrecognizably so.

To address the potential linkage between population sampling and 
analysis we highlight the concept of informative and non‐informa-
tive sampling, relating to the probability distributions for sampled and 
unsampled units. We focus again on the outcome of two random events: 
(a) generation of random values for a finite population, and (b) random 
selection of units from the population. A correlation between selection 
probabilities and unit values (after accounting for any environmental 
covariates [see Appendix S1]) is definitive of informative sampling, and 

implies that to avoid bias the selection process must be taken into ac-
count when making inferences from survey data (Sarndal, 1978).

To illustrate, assume that unit values Yk for a population are in-
dependent random variables with a population probability density 
function f(yk|zk), where the zk is a conditioning variable, as in a re-
gression model. By sampling the population, groups of sampled and 
unsampled population units can be identified. In our example of for-
est stands, the population of 100 stands is divided by sampling into 
one class of 10 stands selected in the sample, and a second class of 
the remaining 90 stands that are not selected.

Sampling allows one to recognize a distribution fs(yk|zk) for the 
values of units in the selected sample, as indicated by the subscript 
s. A common practice is to base inferences about the population on 
the sample distribution fs(yk|zk) (e.g. the 10 stands selected in the 
sample), on the assumption that the latter adequately represents 
the distribution of values across the whole population, including the 
90 stands that are not selected. That is, fs(yk|zk) is assumed to coin-
cide with, or closely approximate, the population distribution f(yk|zk)
. At issue is whether that assumption is met, because otherwise in-
ference based on fs(yk|zk) misrepresents the population as a whole.

To see how such a misinterpretation can occur, consider the re-
lationship between the sample and population distributions, as ex-
pressed by Bayes’ theorem:

when Pr (k∈ s|yk, zk)≠Pr (k∈ s|zk), the sample distribution fs(yk|zk) in 
Equation 5 differs from the population distribution f(yk|zk). Sampling 
then is said to be informative, in that the sampling probabilities 
Pr (k∈ s|yk, zk) are related to the population values yk (Little, 2004; 
Sugden & Smith, 1984).

On the other hand, when Pr (k∈ s|yk, zk)=Pr (k∈ s|zk), f(yk|zk) coin-
cides with fs(yk|zk). In that case sampling is said to be non‐informative, 
in that sampling probabilities are unrelated to the population values. 
Inference about the population then can be based on the sample 
distribution fs(yk|zk), without accounting for the conditional sampling 
probabilities Pr (k∈ s|zk).

Clearly, the informative or non‐informative nature of a sam-
pling plan is key to the use of sample data for population inference. 
Sampling probabilities for population units must be unrelated to the 
corresponding values (non‐informative sampling) in order to support 
reliable inference without further considerations. If sampling probabil-
ities are related to unit values, (informative sampling), the differences 
in Equation 5 between sample and population distributions compli-
cates inference for both design‐based and model‐based approaches.

6  | COMBINING SAMPLING DESIGN AND 
MODELLING

In this section we describe a framework that combines both sources 
of stochasticity, and use it to discuss sampling informability and the 
ignorability of sampling design. These attributes are important in 

Em
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)
=Em

(∑
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∑
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(5)fs(yk|zk) =
Pr (k∈ s|yk, zk)f(yk|zk)

Pr (k∈ s|zk)
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recognizing when a sampling design is (or is not) relevant to popula-
tion‐level inference.

A general framework incorporates both the randomized selec-
tion of units as well as model‐based stochasticity of unit values Y in 
a joint distribution. This allows us to consider both stochastic ele-
ments in the statistical treatment of data, and account for both the 
sampling and analysis components of field ecology in a fully inte-
grated way.

The framework explicitly includes stochastic unit values, here 
represented by the distribution f(y

−
|z
−
), and sampling randomization 

that is captured with a vector I= (I1, … , IN) of binary indicators de-
noting inclusion (or exclusion) of the population units. A joint distri-
bution that includes both factors can be written as

where f(y
−
, i|z

−
) is the conditional distribution of (Y, I)|Z= z

−
 at (y

−
, i), and 

similarly for Pr (i|y
−
, z
−
). Letting s̄ represent population units not in sample 

s, inference with sample data is based on the joint distribution

(see Appendix S1).
Ignoring the sampling mechanism means that Pr (i|ys, ys̄, z−) is omit-

ted in Equation 7, so that inference is based on

The question here is under what conditions the sampling proba-
bilities Pr (i|ys, ys̄, z−) can be safely ignored. It is argued in the Appendix 
S1 that if sampling is non‐informative, that is,

the distribution f(ys|i, z−) that accounts for the effect of sampling is iden-
tical to the distribution f(ys|z−) that omits it. That is, sampling is ignorable 
for statistical inference when sampling is non‐informative.

Though informative sampling and ignorability are related con-
cepts, each is associated with one of the two random events for 
sampling and analysis mentioned earlier:

•	 the terms informative and non‐informative apply to sampling (i.e. 
non‐informative sampling means that sampling probabilities are 
not informed by population unit values); and

•	 ignorability applies to population inference (i.e. ignorability means 
that population inference can ignore the sampling mechanism)

(Sugden & Smith, 1984). An example of a sampling design that is 
informative involves sample selection targeting large Y values and 
avoiding small Y values (e.g. retaining only the units with large Y val-
ues for data analysis). Thus, one might retain and analyse only those 
forest stands with large measures of canopy cover, because they in-
clude a larger proportion of the forest under study. Restricting the 
sampled units to those with larger values violates condition (9), lead-
ing to potential estimator bias.

The critical assumption that sample unit selection does not de-
pend on Y is met with random sampling, and sometimes (though 
not necessarily) with non‐random sampling. More generally, it is 
met with any sampling scheme for which unit selection is based 
solely on the auxiliary z values (e.g. balanced sampling [Royall & 
Pfeffermann, 1982; Yates, 1960]).

Non‐informative sampling, and therefore ignorability, apply most 
conveniently to simple random sampling, because that plan is de-
signed to represent the sampled population. Other plans such as 
stratified random sampling can also represent the population, while 
accounting for population structure. In addition, some purposive 
plans such as balanced sampling can be non‐informative. But be-
cause sampling designs are not automatically ignorable for reliable 
inference, an analyst needs to determine whether the design actu-
ally used is non‐informative, in order to produce reliable and con-
vincing inferences.

These results are especially germane to field studies involving 
sample selection followed by inference about ecological parameters. 
With non‐informative sampling the process of generating a sample 
can effectively be ‘ignored’ in the subsequent inference process, 
which allows one to use any sample of a reasonable size to make 
inferences about population parameters. It is the ability to extend 
parametric inference from a specific set of sampled units to the 
whole population that underlies model‐based inference. The impor-
tance of this feature is frequently overlooked   by ecologists, who 
often assume or even assert a broad inferential range for their work, 
though they often fail to justify it.

7  | SAMPLING STR ATEGIES

In this section we describe how the combined framework can be 
used for formulating sampling strategies that account for both de-
sign and estimation. Many ecological studies involve selection of a 
sampling design as well as estimators of targeted population param-
eters. Because multiple sampling plans can be used to provide data 
for many different estimators, an important question is how best to 
sample the population and aggregate the data into an appropriate 
estimator T, so as to account for the influence of sampling and sto-
chasticity in unit values.

To illustrate, assume that the target of the sampling strategy is the 
population mean, to be estimated with counts of organisms on sample 
units. Here we seek estimators and sampling designs to minimize the 
average over the sample probabilities of the mean square error, that is,

where the subscripts p and m refer, respectively, to probability sam-
pling and model stochasticity.

With this formulation one can condition on a particular sample 

s, identify a predictor T that minimizes Em
(
T− Ȳ

)2

, and then search 

for sampling plans to reduce the expected mean squared error. The 
estimator T for this problem can usefully be expressed in terms of 

(6)f(y
−
, i|z

−
)= f(y

−
|z
−
) Pr (i|y

−
, z
−
),

(7)f(ys, i|z−)=∫ Pr (i|ys, ys̄, z−)f(ys, ys̄|z−)dys̄

(8)f(ys|z−)=∫ f(ys, ys̄|z−)dys̄.

(9)Pr (i|ys, ys̄, z−)=Pr (i|z
−
),

EpEm
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T− Ȳ

)2

=
∑

s
P(s)Em

(
T− Ȳ
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units in the sample for which values are available, and units not in 
the sample for which values must be model‐based predictions:

Under reasonable assumptions Em
(
T− Ȳ

)2

 can be written in 

terms of the component variances,

(see Appendix S1), so that the task of finding an optimal predictor T∗ re-
duces to a search for the predictor U∗ that minimizes Vm(U). The result-
ing predictor T∗ then can be used to look for optimal sampling designs.

For example we consider a population with independent unit val-
ues that is modelled with

In our forest example the auxiliary variable zk might be aspect, 
slope, or elevation for stand k, which is thought to influence the 
amount of the stand canopy cover Yk. In addition, variation in the 
Y values is thought to be influenced by a unit‐specific attribute 
vk, as in vk�2. If vk= zk the optimal predictor T∗ for this model re-
duces to

so that

(see Appendix S1).

Perhaps surprisingly, EmEp
(
T∗ − Ȳ

)2

 in Equation 11 is minimized 

by the purposive selection of a sample with the largest z values, 
rather than by randomized sampling. When the model is correct, 
such a design can give striking improvements over simple random 
sampling. However, its precision is sensitive to the model in Equation 
10, and it performs poorly under different model assumptions 
(Cassel, Sarndal, & Wretman, 2017). Basically, the extreme design 
with samples based on the largest z values is not robust. When there 
is uncertainty in the model, as is so often the case in ecology, simple 
random sampling or balanced sampling with z̄s= z̄ can produce more 
robust results. In essence, sampling that is designed to be represen-
tative of the population at large is more likely to lead to robust esti-
mation when structural features are omitted or inadequately 
represented.

Of course, other models than Equation 10 can be envisioned, 
along with other estimation targets than the population mean. And 

other criteria than EmEp
(
T− Ȳ

)2

 can be formulated, which might in-

clude constraints to avoid different kinds of bias (Sarndal, 1978). Each 

model/parameter/criterion combination can be expected to produce 
its own optimal strategy, with its own robustness considerations.

The bottom line is that a framework incorporating both the 
randomized selection of units and model‐based stochasticity for 
the unit values can be used to identify strategies that include both 
sampling designs and estimators. Under certain conditions it is 
possible to optimize sampling strategy as above, such that an opti-
mal predictor can be identified conditional on a sampling plan, and 
then used to explore the performance of different sampling plans. 
There is, however, a trade‐off between optimality and strategy ro-
bustness. Optimal performance based on an assumed population 
model may be quite suboptimal if the model is incorrect. On the 
other hand, performance that is suboptimal for a particular model 
may turn out to be robust over a broad range of different popula-
tion conditions.

8  | OPPORTUNISTIC SAMPLING

Many recent papers in the ecological literature describe analysis of 
data collected opportunistically in the field, without a specific sam-
pling design (Brown & Williams, 2018). Thus, observers record chance 
observations of some phenomenon (wild‐life species presence, vis-
ible damage from flooding) over a general area. Such opportunistic 
sampling is neither probability‐based nor guided by a model‐assisted 
design, and is substantively different from sampling based on rand-
omization, or purposive sampling based on assumed environmental 
features. It can be subject to selection bias, non‐detection, observer 
bias, recording errors, and other factors influencing the observations 
(Isaac, Strien, August, Zeeuw, & Roy, 2014).

Although there is no role for design‐based inference in oppor-
tunity sampling (given the lack of a priori assignment of selection 
probabilities to potential sample units), model‐based inference may 
be applicable (e.g. Kéry et al., 2010) if the factors influencing obser-
vations are assumed to be known, data on them are collected, and 
sampling is repeated. A key question is whether the models actually 
represent the population over the area of interest, that is, whether 
the conditioning principle in model‐based inference is operative. 
Misrepresentation of population structure and unreliable estimation 
result from failing to satisfy the conditioning principle. For example, 
inflated variances can result from failing to include strata. Variances 
that are too small can result from failing to account for clustering. 
And bias in the estimators of model parameters and their interac-
tions can result from disproportionate sampling effort that is not 
accounted for. If model‐based inference is to be valid in a context 
of opportunistic sampling, design features such as stratification 
and clustering need to be reflected in the model analysis, and the 
model itself must be applicable across all population units. (Skinner 
& Wakefield, 2017).

Even if the critical factors influencing observations are spec-
ified (or weights corresponding to them are identified), reliable 
inferences can be undermined by failing to collect the necessary 
data on those factors. For example data on an important covariate 

T=
∑

s
Yk∕N+

∑
s̄
Ŷk∕N

=
∑

s
Yk∕N+U∕N.

Em

(
T− Ȳ

)2

=
[
Vm(U)+

∑
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Vm(Yk)

]
∕N2
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Em(Yk)=�zk

Vm(Yk)=vk�
2.

T∗ =
∑

s
Yk∕N+U∗∕N

=
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may not be collected at all, or the data range may be too truncated 
to be useful for inference. Even if all the necessary response vari-
ables and covariates are observed where the data are collected 
(e.g. in disturbed areas), statistical inference will be compromised 
for areas where data are not collected (e.g. in undisturbed areas). 
The latter situation is an example of informative sampling, where 
differences between sampled and unsampled areas lead to esti-
mation bias.

The many environmental and observer factors influencing ob-
servations in a broad‐scale field study make it unlikely that oppor-
tunistically collected data can produce reliable inferences, without 
special assumptions or auxiliary information. One approach might 
be to treat the opportunistically collected information as auxiliary to 
other more rigorously collected data, if possible. Without the other 
information or restrictive assumptions, opportunistically collected 
data are better suited for exploratory data techniques (Tukey, 1977, 
1980), in which patterns that emerge from the data point to hypoth-
eses that can be investigated by follow‐up studies designed specifi-
cally for reliable inference (Lenhard, 2006).

9  | DISCUSSION

We have described and compared design‐based and model‐based 
approaches to the collection and analysis of survey data. Each ap-
proach has strengths and limitations. A design‐based approach is 
robust for descriptive population parameters, but does not permit 
inference about causal hypotheses. Model‐based inference accom-
modates non‐random sampling and causal hypotheses, but is de-
pendent on the conditionality principle, which cannot be shown to 
be met for any studied system. A combined framework can incor-
porate the assumed distribution of observations in a model‐based 
approach and the sampling probabilities in a design‐based approach. 
The combined framework takes advantage of both approaches and 
provides a robust methodology to deal with the modelling of sam-
pling problems such as non‐detection and misclassification, as well 
as with the investigation of causal hypotheses.

These results do not support a uniform preference for design‐
based inference, with its randomized sampling, over model‐based 
inference with its assumed stochastic structures, or vice‐versa. For 
example, claims that randomized sampling is always preferred in eco-
logical investigations are unjustified. In fact, balanced sampling and 
other purposive designs are often used to good effect in estimating 
ecological parameters. On the other hand, indifference or lack of at-
tention to the potential consequences of complex and non‐random 
sampling is also unjustified in model‐based inference, because infor-
mative sampling designs can produce badly misleading bias.

Limitations of model‐based inference are often due to non‐in-
dependence of spatially adjacent sample units, and an inability to 
identify important ecological factors affecting population values. 
If the unit values themselves can be assumed to be independent 
and identically distributed across the population, many standard 
statistical results apply regardless of how the sample is selected. 

This conclusion follows from the factorization of Equation 6 into 
a part that involves the observation values and a part that does 
not, which points to the conditions in which response and de-
sign variables are independent of one another. Unfortunately, the 
assumption that the unit values are independent and identically 
distributed can be problematic in ecological investigations, due 
to the tendency of values for nearby population units to exhibit 
correlation. One way around this difficulty is to use randomized 
sampling designs.

A related challenge for model‐based inference is the use of sur-
vey results for different purposes. For example the same dataset 
may be used to set hunting quotas, to allocate program resources, 
or to assess recreational preferences. Because no single combina-
tion of model and sampling design is likely to suffice for such diverse 
purposes, there is a positive incentive to use random sampling and 
design‐based inference to eliminate any appearance of bias in sam-
ple selection (Hansen, Madow, & Tepping, 1983).

However, if there is convincing evidence of patterns in unit val-
ues, they can be used to identify sampling plans and models. For 
example, it may be well documented that on average the number of 
organisms in a habitat patch is proportional to patch area. Modelling 
such patterns underlies many recent methodological advances in 
ecology (abundance and distribution analysis, hierarchical model-
ling, Bayesian approaches to inference, reinforcement learning). 
Modelling in some form is also used to treat non‐sampling errors 
such as differential responses, measurement errors, and imperfect 
detectability (Thompson, 2012).

Promising developments in the partial integration of design‐
based and model‐based approaches may overcome some of their 
respective limitations. A hybrid partially integrated framework 
would apply to finite and infinite populations and incorporate 
measurement error, while producing analytic statistics without the 
need to condition on all sampling features during model specifica-
tion. Advances include disproportionate sample selection (Kish & 
Frankel, 1974); use of model weights to accommodate stratifica-
tion and clustering (Binder, 2018; Fuller, 1975); use of model es-
timates for finite population parameters (Godambe & Thompson, 
1986); incorporation of measurement error (Muthen & Satorra, 
1995; Stapleton, 2008); and use of a mixture of model specifi-
cation and estimation from both approaches (Korn & Graubard, 
2003; Rabe‐Hesketh & Skrondal, 2006).

Both design‐based and model‐based approaches to inference 
have always been a part of ecological investigation, and will continue 
to be useful for the foreseeable future. Which approach, or combi-
nation of approaches, is most appropriate depends on the focus of 
the investigation and the need for efficiency, accuracy and account-
ability. Ecologists must understand the strengths and limitations 
of each approach in order to tailor designs and analyses to specific 
questions and produce unbiased inferences from survey data. Failing 
to do so, or failing to conduct the necessary follow‐up assessment 
after exploration of the data for patterns, can undermine reliable in-
ference as well as its practical application, which so often motivates 
the investigation in the first place.
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